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1. Introduction

The ability for Heliophysics sensors to measure higher and higher resolution
data has outpaced the ability to transmit the data. A mission's limited
telemetry budget has become a bottleneck, with high-resolution measurements
now being discarded simply because there is not enough bandwidth to transmit
them. We present a new algorithm, SEPC (Semi-Empirical Plasma
Compression) which implements data compression for ion velocity distribution
functions in units of counts, validated through preservation of the derived
plasma moments.

The algorithm utilizes a block-oriented transform method via a neural
network auto-encoder to associate to-be-compressed measurements with
previous measurements to reduce the dimensionality. The dimensionality
reduction from the auto-encoder is followed by quantization of the floating-
point coefficients and lossless entropy coding to produce a final compressed
result. Applications for other type of Heliophysics space mission data such as
solar imagery are expected to follow.

2. Semi-Empirical?

The term semi-empirical can be defined as
“involving assumptions, approximations, or
generalizations designed to simplify calculation
or to yield a result in accord with observation.”

By utilizing auto-encoding technology, we
can design compression algorithms for various
types of data (e.g., multi-spectral imagery, in-
situ velocity distribution functions) which use
the traditional transform-method compression
paradigm but with a transform method based
on training data, therefore becoming empirical
in nature. On top of this, the auto-encoder
enforces its own mathematical structure onto
the training data.
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This approach contrasts general-purpose transform methods such
as the Discrete Cosine Transform (used in JPEG) or Wavelet
Transform (used in JPEG2000, DWT/BPE).

4. Dimensionality Reduction

A neural network auto-encoder is used on patches of the 3D velocity structure. The
architecture of the auto-encoder used was Multi-Layer-Perceptron with a single hidden
layer. Experimentation with different latent sizes is done to determine the performance
vs latent size curve. Heuristics are applied to force the average count to be the same
before/after. It is found that a reasonable ‘‘knee” in the performance curve occurs around
N=100, which corresponds to a dimensionality reduction of “10X (= 16 -32 -2 / 100).

Future experimentation with different auto-encoder architectures is expected,
including convolutional auto-encoders and GAN networks.

Accuracy

Moments Reconstruction vs # Dimensions (MMS Mission Phase 4B_dayside.rfr001)

tyy

Above Figure: 1° of each moment is calculated from the test set at different latent sizes (smaller
= more dimensionality reduction). The red Iine corresponds to where latent size equals the input
size (no dimensionality reduction). The r? metric is chosen to prioritize the absolute scale over
what might be acceptable noise, with the belief that a metric such as average relative error might
unfairly penalize acceptable noise.

5. Blocking/Patching Methodology

The neural network auto-encoder is applied to
individual blocks or patches of the 3D structure of
each skymap. This approach is based on the block
encoding approach utilized by JPEG, WEBP, and
MPEG-4. It allows the transform encoder to be
constrained to ‘local” velocity-space information.

32 pixels

0 oxeuds ASzeum
1 ozeuds K3zoum
1€ oxeuds ASzeug

512 pixels

3. Our Demonstration (In-situ Ion Data)

In this poster, we demonstrate the semi-empirical
compression concept with an algorithm designed
for ion velocity distribution function
measurements, trained on data from the MMS
FPI instrument on the day-side orbit.
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6. Latent Quantization and Entropy Coding

After the dimensionality is reduced using an auto-encoder, the latent vector
coefficients are quantized. Quantization includes converting a FLOAT32 coefficient
into a small digitized value to further reduce the bits per pixel. In the validation to
the right, the quantization used is conversion to a FLOAT16 and the truncation of the
decimal part for the number to a 10-bit “FLOAT10”. This corresponds to size
reduction from quantization of 1.6X.

Following this, the quantized values are passed through a lossless entropy coder,
specifically the DEFALTE algorithm (commonly associated with ZIP and GZIP). This
produces a size reduction from entropy coding of about 1.5-2.5X.

7. Validation of Spectrogram and Plasma Moments

The end-to-end compression system is tested on intervals from the test set. The total
compression ratio is around 30X (= 10X - 1.6X - 2X) using the mentioned quantization and lossless
entropy coding. This compares to a ratio of 17X on MMS/FPI Phase 1A's Fast Survey data with
the DWT/BPE algorithm (Barrie et al., 2018). In our validation, we look for what physics is
preserved in the interval. The most important characteristics of a successful compression
algorithm is that is does not lead to false conclusions, which is investigated in an example below.
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A paper is being submitted to the Special Issue of Frontiers in Astronomy and Space
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